perform_ComparativeAnalysis.RdConducts comprehensive comparative statistical analysis on preprocessed metabolomics data. The function automatically selects appropriate statistical tests based on data characteristics including normality, variance homogeneity, and sample independence. Supports both two-group and multi-group comparisons with parametric and non-parametric alternatives.
perform_ComparativeAnalysis(
data,
adjust_p_method = "BH",
sort_p = TRUE,
paired = FALSE,
plot_metabolites = NULL,
alpha = 0.05,
min_group_size = 3,
verbose = FALSE
)List. Output from perform_PreprocessingPeakData function containing:
data_scaledPCA_rsdFiltered_varFiltered: Numeric matrix of processed metabolite data
Metadata: Data frame with sample metadata including 'Group' column
Character. Method for p-value adjustment. Default is "BH". Options include:
"holm": Holm (1979) - Controls family-wise error rate
"hochberg": Hochberg (1988) - Less conservative than Bonferroni
"hommel": Hommel (1988) - More powerful than Hochberg
"bonferroni": Classical Bonferroni correction
"BH": Benjamini & Hochberg (1995) - Controls false discovery rate
"BY": Benjamini & Yekutieli (2001) - More conservative FDR control
"fdr": Alias for "BH"
"none": No adjustment
Logical. If TRUE (default), results are sorted by adjusted p-values
in ascending order.
Logical. If TRUE, performs paired sample tests. Default is FALSE.
Note: Requires equal group sizes for multi-group comparisons.
Character vector. Names of metabolites to visualize. If provided,
generates statistical plots using ggstatsplot. Default is NULL (no plots).
Numeric. Significance threshold for assumption tests. Default is 0.05.
Integer. Minimum required sample size per group. Default is 3.
Logical. If TRUE, prints detailed progress information. Default is FALSE.
List containing:
results: Data frame with statistical test results for each metabolite
plots: List of ggplot objects (if plot_metabolites specified)
summary: Summary statistics of the analysis
assumptions: Results of assumption tests
metadata: Analysis metadata and parameters used
The function performs the following workflow:
Validates input data structure and parameters
Removes quality control samples from analysis
Tests statistical assumptions (normality, variance homogeneity)
Selects appropriate statistical tests automatically
Applies multiple comparison corrections
Generates optional visualization plots
For two-group comparisons, the function chooses between:
Paired/Independent t-test (parametric)
Welch's t-test (unequal variances)
Mann-Whitney U test (non-parametric)
Wilcoxon signed-rank test (paired non-parametric)
For multi-group comparisons:
One-way ANOVA (parametric)
Repeated measures ANOVA (paired)
Kruskal-Wallis test (non-parametric)
if (FALSE) { # \dontrun{
# Basic two-group comparison
results <- perform_ComparativeAnalysis(
data = preprocessed_data,
adjust_p_method = "BH"
)
# Paired comparison with plots
results <- perform_ComparativeAnalysis(
data = preprocessed_data,
paired = TRUE,
plot_metabolites = c("metabolite_1", "metabolite_2"),
verbose = TRUE
)
# Multi-group comparison with strict correction
results <- perform_ComparativeAnalysis(
data = preprocessed_data,
adjust_p_method = "bonferroni",
sort_p = TRUE
)
} # }